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RS platforms can "see the sea" in 

ways that are otherwise impossible

Why?

Marine animal
forests

Navigation
Constructions
Mining

Cultural Heritage

Tourism

Map/monitor marine animal
forests

Marine litter 
detection

Support action 
for climate
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What kind of platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

• RGB+MS imagery

• LiDAR

• SAR Radar Altimeter
• Other special payload instruments (radiometers etc.)
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5

How can we get this information?

• Exploiting the RADIOMETRIC information of the scenes

• Exploiting the GEOMETRIC information of the scenes

Satellites, occupied airborne or unoccupied airborne (drones)

• RGB+MS imagery

• LiDAR

• SAR Radar Altimeter
• Other special payload instruments (radiometers etc.)

5

What kind of platforms and data?



What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking
• Shallow water bathymetry

• Shallow seabed cover maps
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Reflection
Scattering

Refraction

Diffuse

Sun rays

5m

10m

20m

30m

Only 1% of the light reaches the depth of 100m

100%

50%

25%

12,5%

Diffuse

Light absorption in water column

Water molecules absorb almost all sunlight
except for the blue part of the spectrum,
which is reflected back.
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Basics of Spectral-based methods

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT

Ls depends on the roughness of the water surface and 

sun position (sun glint)​

Lb is related to depth and is the radiance reflected by the bottom

Lc is related to the water’s optical property (i.e. turbidity)​
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What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (i.e., chlorophyll)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Biogeochemical indices

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the radiance from the biogeochemical particles

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT

algae

Disolved organic
matter

Inorganic
suspendedmaterial
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Chlorophyll (algae)
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Suspended matter (turbidity)
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Get biogeochemical indices

How?

Empirical algorithms
Statistically relate measurements of i.e. chlorophyll (CHL) or suspended matter 

and reflectance through regression, polynomial expressions or Artificial Neural 

Networks

Widely used bands:

▪ Chlorophyll: Red, green and visible and near infrared (VNIR) bands

▪ Suspended matter: Red band

Semi-analytical algorithms
Estimate CHL via spectral absorption of phytoplankton, spectral 

backscattering by particles & the combined absorption by non-algal particles 

and colored dissolved organic material (O'Reilly et al., 2019)
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Examples

Suspended matter

Chlorophyll

(Katlane et al., 2020)
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What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Sea ice

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the ice-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT

ice

16

Ls



Sea ice
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How?

Empirical algorithms

▪ Exploit spectral characteristics of snow, ice, & water in the visible and NIR

▪ Simple regression and polynomial models

▪ Support Vector Machines
▪ Gaussian Mixture Models

▪ Fully Conv. Neural Nets.

Major difficulties

▪ Clouds: limited visibility & similar spectral characteristics

▪ Low light conditions: at high latitudes during polar night

▪ Thin ice at melting stage (black ice) is transparent and appears with the 

same color of the underlying water
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(Heinilä et al., 2021)
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Sea ice



What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Sea surface temperature (SST)

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT
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Sea Surface Temperature (SST)
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Sea Surface Temperature (SST)

How?
Highly accurate calibration of the three IR channels @ 3.74, 10.85 & 12 µm (S7-

S8-S9) absorption & observation of the same on-ground pixel by means of two 

atmospheric path views for correction of aerosol effects.

Split-window algorithm
(SWA) that utilizes knowledge of land surface emissivity

Sentinel-3
Absolute accuracy ​>0.3 K ​
Spatial resolution 1km

Facts 

SST varies between -1.8°C

and +30°C

(Remedios et al., 2012)
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What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Marine Debris

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)+L(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

L is the radiance reflected from the marine litter, oil 

spills etc.

Solar radiance

Lp

Lb

Imagesensor

L

Lc

LT
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Pollution/oil spill detection
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Marine Debris

(Kikaki et al., 2022)
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Marine Debris

(Kikaki et al., 2022)

How?

Empirical models
Statistically relate measurements marine debris (i.e. plastic) and reflectance 

through regression, polynomial expressions or ML methods

Some ML baselines
Weakly supervised semantic segmentation and multi-label classification:

▪ RFSS (spectral signatures)

▪ RFSS+SI (+ calculated spectral indices)
▪ RFSS+SI+GLCM (+ extracted Gray-Level Co-occurrence Matrix (GLCM) textural feat.)

▪ U-Net (11 Rayleigh reflectance S2 bands)

Multi-label classification:

▪ ResNet

(Kikaki et al., 2022)
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Marine Debris

(Kikaki et al., 2022)
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What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Shallow Water Bathymetry

2.5% of the EU seabed is 

“shallow” (<20-25m depth) 

excluding lakes

Map source: 

EMODnet
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Shallow water Bathymetry

32Data and Processing: Ph. Vision Lab. CUT



Shallow water Bathymetry

33Data and Processing: Ph. Vision Lab. CUT



What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

▪ Spectral-based

▪ Stereo-based

• Shallow seabed cover maps
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Basics of spectral-based bathymetry

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT
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Basics of spectral-based bathymetry

LT(λ)=Lp(λ)+Ls(λ)+Lc(λ)+Lb(λ)

LT is the total upwelling radiance

Lp are the contributions from the atmosphere

Ls is the radiance reflected from the water surface

Lc is the radiance from the water column

Lb is the bottom-reflected radiance

Easy way

Correlate color loss and depth

What about different seabed classes ?

Solar radiance

Lp

Lb

Imagesensor

Ls

Lc

LT

36

5m
10m

20m

30m

100%

50%

25%

12,5%



Spectral-based Bathymetry

How?

Statistical models: Statistically relate meas. depth and reflectance – need for 

ground truth data

▪ From simple linear regression to ML (RFs, SVMs) and DL (FCNs, GANs)

Physics-based radiative transfer models (bio + physio-optical):
▪ Inversion of a radiative transfer models (RTM) – no need for ground truth data

▪ Analytical

▪ Semi-empirical (band ratio, band difference, PCA, ANN, regression)

▪ Semi-analytical (direct linear inversion, spectral deconvolution)

Hybrid methods
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Statistical models

Common approaches

▪ The standard linear algorithm (Lyzenga, 1978) assumes a log-linear 

relationship between reflectance (R(𝜆i )) and water depth (z):.

▪ Stumpf et al., 2003 bathymetric algorithm

The method approximates “physics” of light in the water:

▪ Sample-specific multiple band ratio techniques (Niroumand-Jadidi et al., 2020)

▪ Physics-based radiative transfer model (RTM) inversion techniques

▪ Shallow and Deep ML techiques (RFs, SVMs, FCNs)

where m1 is a tunable constant to scale the ratio to 
depth, n is a fixed constant for all areas, and m0 is the 

offset for a depth of 0m

pSDB “pseudo 

depth”
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Statistical models

Examples
Airborne HS images

(Legleiter et al., 2018)

39

Polynomial regression
Ground truth bathymetric data used: Acoustic Doppler 

Current Profiler (ADCP)



Statistical models

Examples

K-NN clustering +

Polynomial 

regression

(Legleiter et al., 2018)

(Niroumand-Jadidi et al., 2020) 40



Statistical models

Examples
Worldview-2 (WV2) images

(Ai et al., 2020)

41

CNNs
Ground truth 

bathymetric data 
used: Airborne 
LiDAR



Statistical models

Artificial 

Neural Net.

RGB LiDAR

Input RGB Output bathymetry
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Examples
UAV RGB images

CNNs
Ground truth bathymetric data used: Airborne LiDAR



Ground truth data
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ICE-Sat2 satellite or similar

TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020



Ground truth data
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Airborne LiDAR or shipborne Echosounder

TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020



Pros, Issues and Limitations

▪ No sophisticated geometry processing necessary

▪ Can handle certain differences in substrate type and water 

clarity

▪ Covers large areas (satellites)
▪ Max depth ~ 1 Secchi

▪ Requires visibility of bottom features (similar to SfM-MVS, but 
not texture is required here)

▪ Work better on homogenous seabed

▪ Requires ground-truth for calibrating coefficients

▪ Heavily affected by sun glint, high aerosol, turbidity etc.

▪ Lack of generalization potential due to the 
daily/seasonal etc. variability of spectral values

Spectral-based methods
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the max depth a disk 30cm is visible



What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

▪ Spectral-based

▪ Stereo-based

• Shallow seabed cover maps
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Basics of stereo-based models

Solar
radiance

Imagesensor

47

Imagesensor



Basics of stereo-based models

48

Refraction phenomenon

Solar
radiance

ImagesensorImagesensor



Refraction phenomenon

Snell’s law

The ratio of the sines of the

angles of incidence and

refraction is equivalent to the

ratio of phase velocities in the

two media

49

The law is based on Fermat's 

principle, also known as the 

principle of least time

Fermat's principle states that the 

path taken by a ray between two 

given points is the path that can be 

traversed in the least time.

θ1

θ2



Refraction phenomenon

50

Refraction effect is totally 

different for each image 

and each image point!

It depends on
▪ Depth

▪ Angle

▪ Camera position

Solar
radiance

ImagesensorImagesensor



Refraction phenomenon

51

RMSE of about 30-40% of the 

real depth value!

Example:

A point at 13.5m depth would 

appear at 10m depth

Solar
radiance

ImagesensorImagesensor

Apparent

seabed



Single View Geometry
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▪ Violation of the Collinearity 

Equation

▪ Apparent depths



Multiple-View Geometry
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▪ Violation of the Collinearity 

Equation – different for each 

point -> for each image

▪ Apparent depths

▪ Increased noise in the 3D 

point clouds



Refraction correction basics

Since SfM-MVS software is delivering 3D point clouds even when refraction is

ignored, can we skip it?

– NO, it’s physics!

To deliver accurate SfM-MVS results, orthoimages, Digital Elevation Models etc.,

the correction of refraction effects is necessary!
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Stereo-based bathymetry

How?

Structure from Motion – Multi-View Stereo + Refraction correction

Refraction correction

Analytical correction

Modification of the collinearity equation. (1950…)

Image-space correction

Re-projection of the original photo to correct the water refraction. (2018…)

Machine learning-based

Depends on machine learning models that learn the underestimation of depths
and predict the correct depth knowing only the apparent one. (2019…)
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Image Space Correction
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Agrafiotis et al., 2019



Image Space Correction

57Uncorrected image

Data: Ph. Vision Lab. CUT



Image Space Correction

58Corrected image

Data: Ph. Vision Lab. CUT



3D Space Correction
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Agrafiotis et al., 2020



Results

65% RMSE reduction compared to the state of the art (LiDAR ground truth data used)

94% RMSE reduction in depth determination between corrected and uncorrected 

data (LiDAR ground truth data used)

Need for synthetic data

Train ML models

▪ Avoid errors and limitations in image matching 

caused by the visibility restrictions (turbidity, 

caustics, sun glint)

▪ Avoid errors introduced by the wavy surface

The only unknown is the refraction effect

Z = f (X, Y)

60

Agrafiotis et al., 2021



Example

Z = f (X, Y)

61
Agrafiotis et al., 2019

3.17m Difference!



Pros, Issues and Limitations

▪ Measured depth through triangulation & Delivers color information

▪ Delivers high 3D point density in shallow water areas

▪ Max depth ~ 1 Secchi

▪ Combined DEMs of emerged and submerged areas

▪ More accurate compared to spectral-based methods, 
WHEN refraction is corrected

▪ Refraction correction is necessary

▪ Passive method

▪ Geometric
▪ Requires texture to perform SfM-MVS

Stereo-based methods
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Stereo VS Spectral-based

63

Stereo-based

Spectral-based 

(left image)

Spectral-based 

(right image)

Cao et al., 2021



Stereo VS Spectral-based

Cross sections of the derived bathymetries
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Cao et al., 2021



Stereo VS Spectral-based

Wave breaking and turbidity effects

65

Cao et al., 2021

Stereo-based Spectral-based



What info can we get using RGB and 

MS Remote Sensing Ocean data?

• Biogeochemical indices (chlorophyll, nitrates)

• Sea ice coverage and state

• Sea surface temperature

• Renewable energy monitoring

• Marine debris detection/ tracking

• Pollution/ oil spill detection/ tracking

• Shallow water bathymetry

• Shallow seabed cover maps
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Shallow seabed cover maps
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Data: Ph. Vision Lab. CUT​, Processing 3[Deep]Vision



Shallow seabed cover maps

68

How?

Statistical models: Statistically relate meas. seabed cover and reflectance –

need for ground truth data

▪ From simple linear regression to ML (RFs, SVMs) and DL (FCNs etc.)



Seasonal/Monthly variation

(Sakai et al., 2021)

69

MANY different 

spectral 

signatures for 

same pixels

▪ Limited

generalization of 

trained models



Instant variation

70

Caused by

▪ Change in point 

of view

▪ Sun glint

▪ Caustics
▪ Currents

▪ Ships and boats

▪ Clouds

t t+5sec OR different angle

Data: Ph. Vision Lab. CUT



Seasonal/Monthly variation
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Figures: Caballero and Stumpf, 2020

Caballero and Stumpf, 2020



MagicBathy MSCA PF HE Project
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Figures: Caballero and Stumpf, 2020

Multimodal multitAsk learninG for MultIsCale BATHYmetric mapping in shallow waters

Funding: HORIZON Europe MSCA Postdoctoral Fellowships - European Fellowships

Host: TU Berlin, RSiM group 

Duration: 24 Months

Starting date: 1st of February 2023

Web: https://www.magicbathy.eu/
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