

How is Remote Sensing used to observe the oceans?

Panagiotis Agrafiotis
pagraf@central.ntua.gr
http://users.ntua.gr/pagraf/
https://3deepvision.eu/

National Technical University of Athens School of RS and Geoinformatics Engineering Lab. Of Photogrammetric Computer Vision and Signal Processing

Research Group

RSIM

RS platforms can "see the sea" in ways that are otherwise impossible

Why?

Support action for climate

Map/monitor marine animal forests

What kind of platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

- RGB+MS imagery
- LiDAR
- SAR Radar Altimeter
- Other special payload instruments (radiometers etc.)

What kind of platforms and data?

Satellites, occupied airborne or unoccupied airborne (drones)

- RGB+MS imagery
- LiDAR
- SAR Radar Altimeter
- Other special payload instruments (radiometers etc.)

How can we get this information?

- Exploiting the RADIOMETRIC information of the scenes
- Exploiting the GEOMETRIC information of the scenes

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/ tracking
- Pollution/oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Light absorption in water column

Basics of Spectral-based methods

Solar radiance

Image sensor

 L_T is the total upwelling radiance

 L_p are the contributions from the atmosphere

 L_s is the radiance reflected from the water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

 L_b is related to **depth** and is the radiance reflected by the **bottom**

 L_c is related to the water's optical property (i.e. **turbidity**)

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (i.e., chlorophyll)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Biogeochemical indices

Solar radiance $L_{T}(\lambda) = L_{p}(\lambda) + L_{s}(\lambda) + L_{c}(\lambda) + L_{b}(\lambda) + L(\lambda)$

 L_T is the total upwelling radiance L_p are the contributions from the atmosphere L_s is the radiance reflected from water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

L is the radiance from the biogeochemical particles

Chlorophyll (algae)

Suspended matter (turbidity)

Get biogeochemical indices

How?

Empirical algorithms

Statistically relate measurements of i.e. chlorophyll (CHL) or suspended matter and reflectance through regression, polynomial expressions or **Artificial Neural Networks**

Widely used bands:

- Chlorophyll: Red, green and visible and near infrared (VNIR) bands
- Suspended matter: Red band

Semi-analytical algorithms

Estimate CHL via spectral absorption of phytoplankton, spectral backscattering by particles & the combined absorption by non-algal particles and colored dissolved organic material (O'Reilly et al., 2019)

Examples

Chlorophyll

Suspended matter

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Image sensor

 $L_{T}(\lambda) = L_{p}(\lambda) + L_{s}(\lambda) + L_{c}(\lambda) + L_{b}(\lambda) + L(\lambda)$

Solar radiance

 L_T is the total upwelling radiance L_p are the contributions from the atmosphere L_s is the radiance reflected from water surface L_c is the radiance from the water column L_b is the bottom-reflected radiance

L is the ice-reflected radiance

How?

Empirical algorithms

- Exploit spectral characteristics of snow, ice, & water in the visible and NIR
- Simple regression and polynomial models
- Support Vector Machines
- Gaussian Mixture Models
- Fully Conv. Neural Nets.

Major difficulties

- Clouds: limited visibility & similar spectral characteristics
- Low light conditions: at high latitudes during polar night
- Thin ice at melting stage (black ice) is transparent and appears with the same color of the underlying water

(Heinilä et al., 2021)

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Sea surface temperature (SST)

Solar radiance

 L_T is the total upwelling radiance L_p are the contributions from the atmosphere

 L_s is the radiance reflected from the water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

Sea Surface Temperature (SST)

Sea Surface Temperature (SST)

How?

Highly accurate calibration of the three IR channels @ 3.74, $10.85 \& 12 \,\mu m$ (S7-S8-S9) absorption & observation of the same on-ground pixel by means of two atmospheric path views for correction of aerosol effects.

Split-window algorithm

(SWA) that utilizes knowledge of land surface emissivity

$$T_{\rm S} = a_{f,i,pw} + b_{f,i} (T_{11} - T_{12}) \frac{1}{\cos(\theta/m)} + (b_{f,i} + c_{f,i}) T_{12}$$
 (Remedios et al., 2012)

Sentinel-3

Absolute accuracy >0.3 K Spatial resolution 1 km

Facts

SST varies between -1.8°C and +30°C

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/ tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Solar radiance $L_T(\lambda) = L_p(\lambda) + L_s(\lambda) + L_c(\lambda) + L_b(\lambda) + L(\lambda)$

 L_T is the total upwelling radiance L_p are the contributions from the atmosphere L_s is the radiance reflected from the water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

L is the radiance reflected from the marine litter, oil spills etc.

Pollution/oil spill detection

How?

Empirical models

Statistically relate measurements marine debris (i.e. plastic) and reflectance through regression, polynomial expressions or **ML methods**

Some ML baselines

Weakly supervised semantic segmentation and multi-label classification:

- RF_{SS} (spectral signatures)
- RF_{SS+SI} (+ calculated spectral indices)
- RF_{SS+SI+GLCM} (+ extracted Gray-Level Co-occurrence Matrix (GLCM) textural feat.)
- U-Net (11 Rayleigh reflectance S2 bands)

Multi-label classification

ResNet

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Shallow Water Bathymetry

2.5% of the EU seabed is "shallow" (<20-25m depth) excluding lakes

Shallow water Bathymetry

Shallow water Bathymetry

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
 - Spectral-based
 - Stereo-based
- Shallow seabed cover maps

Basics of spectral-based bathymetry

Solar radiance

 $L_{T}(\lambda) = L_{p}(\lambda) + L_{s}(\lambda) + L_{c}(\lambda) + L_{b}(\lambda)$

 L_T is the total upwelling radiance

 L_p are the contributions from the atmosphere

 L_s is the radiance reflected from the water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

Basics of spectral-based bathymetry

Solar radiance

Image sensor

 L_T is the total upwelling radiance

 L_{p} are the contributions from the atmosphere

 L_s is the radiance reflected from the water surface

 L_c is the radiance from the water column

 L_b is the bottom-reflected radiance

Easy way

Correlate color loss and depth

What about different seabed classes?

Spectral-based Bathymetry

How?

Statistical models: Statistically relate meas. depth and reflectance – need for ground truth data

From simple linear regression to ML (RFs, SVMs) and DL (FCNs, GANs)

Physics-based radiative transfer models (bio + physio-optical):

- Inversion of a radiative transfer models (RTM) no need for ground truth data
- Analytical
- Semi-empirical (band ratio, band difference, PCA, ANN, regression)
- Semi-analytical (direct linear inversion, spectral deconvolution)

Hybrid methods

Common approaches

 The standard linear algorithm (Lyzenga, 1978) assumes a log-linear relationship between reflectance (R(λi)) and water depth (z):.

$$z = b \log R(\lambda_i) + c$$

Stumpf et al., 2003 bathymetric algorithm
 The method approximates "physics" of light in the water:

- Sample-specific multiple band ratio techniques (Niroumand-Jadidi et al., 2020)
- Physics-based radiative transfer model (RTM) inversion techniques
- Shallow and Deep ML techiques (RFs, SVMs, FCNs)

Examples

Airborne HS images

Polynomial regression

Ground truth bathymetric data used: Acoustic Doppler Current Profiler (ADCP)

Examples

K-NN clustering + **Polynomial** regression

(a)

 $R^2 = 0.98$ RMSE= 0.07 [m Observed depth [m] 2.5 0.5 1.5

Predicted depth [m]

(c)

(Niroumand-Jadidi et al., 2020)

(b)

estimation for x

Examples

Worldview-2 (WV2) images

CNNs

Ground truth bathymetric data used: Airborne LiDAR

Examples

UAV RGB images

CNNs

Ground truth bathymetric data used: Airborne LiDAR

Ground truth data

ICE-Sat2 satellite or similar

Ground truth data

Airborne LiDAR or shipborne Echosounder

Spectral-based methods

Pros, Issues and Limitations

- No sophisticated geometry processing necessary
- Can handle certain differences in substrate type and water clarity
- Covers large areas (satellites)
- Max depth ~ 1 **Secchi** the max depth a disk 30cm is visible

- Requires visibility of bottom features (similar to SfM-MVS, but not texture is required here)
- Work better on homogenous seabed
- Requires ground-truth for calibrating coefficients
- Heavily affected by sun glint, high aerosol, turbidity etc.
- Lack of generalization potential due to the daily/seasonal etc. variability of spectral values

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
 - Spectral-based
 - Stereo-based
- Shallow seabed cover maps

Basics of stereo-based models

Basics of stereo-based models

Refraction phenomenon

Snell's law

The ratio of the sines of the angles of incidence and refraction is equivalent to the ratio of phase velocities in the two media

The law is based on **Fermat's principle**, also known as the
principle of least time
Fermat's principle states that the
path taken by a ray between two
given points is the path that can be
traversed in the least time.

$$rac{\sin heta_2}{\sin heta_1} = rac{v_2}{v_1} = rac{n_1}{n_2}$$

Refraction phenomenon

Refraction effect is totally different for each image and each image point!

It depends on

- Depth
- Angle
- Camera position

Refraction phenomenon

RMSE of about 30-40% of the real depth value!

Example:
A point at 13.5m depth would appear at 10m depth

- Violation of the Collinearity Equation
- Apparent depths

Multiple-View Geometry

- Violation of the Collinearity
 Equation different for each
 point -> for each image
- Apparent depths
- Increased noise in the 3D point clouds

Refraction correction basics

Since SfM-MVS software is delivering 3D point clouds even when refraction is ignored, can we skip it?

- **NO**, it's physics!

To deliver accurate SfM-MVS results, orthoimages, Digital Elevation Models etc., the correction of refraction effects is necessary!

Stereo-based bathymetry

How?

Structure from Motion – Multi-View Stereo + Refraction correction

Refraction correction

Analytical correction

Modification of the collinearity equation. (1950...)

Image-space correction

Re-projection of the original photo to correct the water refraction. (2018...)

Machine learning-based

Depends on machine learning models that learn the underestimation of depths and predict the correct depth knowing only the apparent one. (2019...)

Image Space Correction

Image Space Correction

Image Space Correction

3D Space Correction

Need for synthetic data

Train ML models

- Avoid errors and limitations in image matching caused by the visibility restrictions (turbidity, caustics, sun glint)
- Avoid errors introduced by the wavy surface

The only unknown is the refraction effect

Results

65% RMSE reduction compared to the state of the art (LiDAR ground truth data used) **94%** RMSE reduction in depth determination between corrected and uncorrected data (LiDAR ground truth data used)

Example

The respective parts of the cross sections

Sea surface	Section on the uncorrected image- based point cloud
Section on the corrected image-based point cloud	Section on the LiDAR point cloud

Stereo-based methods

Pros, Issues and Limitations

- Measured depth through triangulation & Delivers color information
- Delivers high 3D point density in shallow water areas
- Max depth ~ 1 Secchi
- Combined DEMs of emerged and submerged areas
- More accurate compared to spectral-based methods, WHEN refraction is corrected
- Refraction correction is necessary
- Passive method
- Geometric
- Requires texture to perform SfM-MVS

Stereo VS Spectral-based

Spectral-based (right image)

Cao et al., 2021

Cross sections of the derived bathymetries

Cao et al., 2021

Wave breaking and turbidity effects

Cao et al., 2021

What info can we get using RGB and MS Remote Sensing Ocean data?

- Biogeochemical indices (chlorophyll, nitrates)
- Sea ice coverage and state
- Sea surface temperature
- Renewable energy monitoring
- Marine debris detection/tracking
- Pollution/ oil spill detection/ tracking
- Shallow water bathymetry
- Shallow seabed cover maps

Shallow seabed cover maps

Shallow seabed cover maps

How?

Statistical models: Statistically relate meas. seabed cover and reflectance – need for ground truth data

From simple linear regression to ML (RFs, SVMs) and DL (FCNs etc.)

Seasonal/Monthly variation

MANY different spectral signatures for same pixels

 Limited generalization of trained models

(Sakai et al., 2021)

Instant variation

Caused by

- Change in point of view
- Sun glint
- Caustics
- Currents
- Ships and boats
- Clouds

Seasonal/Monthly variation

MagicBathy MSCA PF HE Project

Multimodal multitAsk learninG for MultIsCale BATHYmetric mapping in shallow waters

Funding: HORIZON Europe MSCA Postdoctoral Fellowships - European Fellowships

Host: TU Berlin, RSiM group

Duration: 24 Months

Starting date: 1st of February 2023

Web: https://www.magicbathy.eu/

References

- Heinilä, K., Mattila, O. P., Metsämäki, S., Väkevä, S., Luojus, K., Schwaizer, G., & Koponen, S. (2021). A novel method for detecting lake ice cover using optical satellite data. *International Journal of Applied Earth Observation and Geoinformation*, 104, 102566.R. E. Woods, Digital Image Processing, 2nd edition, Prentice Hall, 2001.
- Kikaki, K., Kakogeorgiou, I., Mikeli, P., Raitsos, D. E., & Karantzalos, K. (2022). MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. *PloS one*, 17(1), e0262247.
- Sakai, T., Omori, K., Oo, A. N., & Zaw, Y. N. (2021). Monitoring saline intrusion in the Ayeyarwady Delta, Myanmar, using data from the Sentinel-2 satellite mission. *Paddy and Water Environment*, 19(2), 283-294.
- Niroumand-Jadidi, M., Bovolo, F., & Bruzzone, L. (2020). SMART-SDB: Sample-specific multiple band ratio technique for satellite-derived bathymetry. Remote Sensing of Environment, 251, 112091.
- Ai, Bo, et al. "Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images." *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 13 (2020): 2888-2898.
- Katlane, R., Dupouy, C., El Kilani, B., & Berges, J. C. (2020). Estimation of chlorophyll and turbidity using sentinel 2A and EO1 data in Kneiss Archipelago Gulf of Gabes, Tunisia. *International Journal of Geosciences*, 11, p-708.
- Cao, B., Deng, R., Xu, Y., Cao, B., Liu, Y., & Zhu, S. (2021). Practical Differences Between Photogrammetric Bathymetry and Physics-Based Bathymetry. *IEEE Geoscience and Remote Sensing Letters*, 19, 1-5.
- Agrafiotis, P., Karantzalos, K., Georgopoulos, A., & Skarlatos, D. (2020). Correcting image refraction: Towards accurate aerial image-based bathymetry mapping in shallow waters. *Remote Sensing*, 12(2), 322.
- Agrafiotis, P., Skarlatos, D., Georgopoulos, A., & Karantzalos, K. (2019). DepthLearn: learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds. Remote Sensing, 11(19), 2225.
- Agrafiotis, P., Karantzalos, K., et al. Learning from Synthetic Data: Enhancing Refraction Correction Accuracy for Airborne Image-Based Bathymetric Mapping of Shallow Coastal Waters. PFG 89, 91–109, 2021
- Bianco, G., Muzzupappa, M., Bruno, F., Garcia, R., & Neumann, L. (2015). A new color correction method for underwater imaging. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 25.
- Caballero, I., & Stumpf, R. P. (2020). Towards routine mapping of shallow bathymetry in environments with variable turbidity: contribution of Sentinel-2A/B satellites mission. Remote Sensing, 12(3), 451.

